
機器學習 (ML)
這一切都是關於將各個要點連結起來。 連接數據越多,您就越能了解什麼對您的業務最有利。 我們使企業能夠從不同的數據點和不同的數據中產生見解。 對於業務分析師和數據科學家來說,它高效且易於使用,無需編寫程式即可實現所有技能等級的數據科學建模。 畢竟,數據科學和機器學習不一定要複雜才能強大。

組合程式語言
使用最適合該工作的程式語言編寫以數據為中心的應用,將不同語言的語法混合在一個程式中。 我們的程式碼和無程式碼工具,可讓您使用 Python、R、SQL 和 SAS 語言建立、維護和執行模型和程式。 通過將所有這些語言混合到單一可執行程式或工作流程中的單一應用,並在 SAS7BDAT、Pandas 和 R 數據幀之間無縫傳輸資料。
投入多年使用 SAS 語言開發 IP 的組織,可以使用我們的工具繼續維護和執行其現有的 SAS 語言程式,而無需任何其他第三方產品。

從這裡開始您的機器學習之旅
我們以桌面電腦為基礎的預測分析和機器學習解決方案專為具有不同技能的人員而設計,可幫助您快速從數據中產生可採取行動的見解。快速建立預測性和規範性模型,可以輕鬆解釋和量化數據中發現的見解。
我們基於伺服器的解決方案將所有數據探勘運算從桌面電腦轉移到伺服器,運用更強大的 CPU 和記憶體資源以及更大更快的儲存功能。對於使用者而言,這意味著在不影響分析深度的情況下,得以實現更有效率的數據分析。對於 IT 來說,這意味著對部署、安全性和使用者管理有更多的控制,因為各應用軟體和檔案存取的權限是由伺服器的作業系統控制。

大數據和機器學習 (ML)
我們的行業首選平臺可以管理和處理大量數據,包括在記憶體中處理超大數據集的能力,這就是為什麼 Altair 被納入大數據架構的原因。我們提供了一個與分散式數據結構整合的數據科學生產力工具,如 Hadoop HDFS、Amazon S3 和其他大規模分散式檔案系統,您可以輕鬆地對具有數以千列計和數以百萬行計的數據集進行分析。

Altair 合作夥伴聯盟機器學習解決方案
Altair 透過其 TIM Studio 產品,使用 APA 合作夥伴的 Instant Machine Learning - InstantML 時間序列數據技術,來補充我們的機器學習產品。 TIM Studio 是一款一流的時間序列數據分析工具,可協助使用者自動建立用於預測和異常檢測的數據模型,以幫助他們做出更明智的業務決策。
APA 提供了許多其他數據分析合作夥伴解決方案,以增強我們目前的產品組合,這些解決方案都可以透過您的 Altair Units 許可證取得。
特色資源

Guide to Using Altair RapidMiner to Estimate and Visualize Electric Vehicle Adoption
Data drives vital elements of our society, and the ability to capture, interpret, and leverage critical data is one of Altair's core differentiators. While Altair's data analytics tools are applied to complex problems involving manufacturing efficiency, product design, process automation, and securities trading, they're also useful in a variety of more common business intelligence applications, too.
Explore how machine learning drives EV adoption insights - click here.
An Altair team undertook a project utilizing Altair® Knowledge Studio® machine learning (ML) software and Altair® Panopticon™ data visualization tools to investigate a newsworthy topic of interest today: the adoption level of electric vehicles, including both BEVs and PHEVs, in the United States at the county level.
This guide explains the team's findings and the process they used to arrive at their conclusions.

Game-Changing Financial Analytics
Credit risk specialist builds robust SAS language-powered analytics framework. Vestigo uses Altair Analytics Workbench to develop and maintain models and programs written in the SAS language. The software's drag-and-drop workflow lets its teams build new models quickly without needing to write any code. When the team needs to update existing client libraries, they can work with clients regardless of what language the client used to build them originally since Analytics Workbench can handle Python, R, and SQL in addition to the SAS language. The Vestigo team can combine modules built in any of the four languages into their updated models.

Machine Learning in Engineering
When applied to engineering, Machine Learning can be a powerful tool to aid in a range of applications, from faster finite-element (FE) model building to optimizing manufacturing processes and obtaining more accurate results from physics-based simulations. Although incorporating this collection of technology is relatively new in the field of engineering, Altair has made leaps forward in this space to provide users with the tools they need to make a difference.

Analytics for Heavy Equipment
Serba Dinamik is an engineering company specializing in operations and maintenance (O&M), engineering, procurement, construction and commissioning (EPCC), and IT solutions for energy exploration and production firms. Their team worked with Altair to develop a Smart Predictive Maintenance Data System (SPMDS) utilizing Knowledge Studio and Panopticon. Maintenance crews use Panopticon-powered dashboards built into SPMDS to monitor every sensor mounted on operating turbines in real time. AI models built with Knowledge Studio identify potential failures or issues that require engineering attention, and, based on that understanding, take turbines offline only when necessary.
